UTM Data Requirements

Agenda

Project Principles

- Based on U-space CONOP and European Regulatory Framework (EU 2021/664 665 666)
 - MPA 2021-14
 - **ASTM 3548-21**
 - ASTM 3411-22a
- Adapt international regulation to the Israeli environment (EASA services vs. ICAO)
- 8 quarterly very large-scale demonstration (VLD) (2 weeks per quarter)
- Data collection and detailed debriefing to serve effective data driven regulation
- Government support in expenses and enabling the project operations (CAAI as a partner)
- Centralized project management

- Extremely Heterogenic
 - Intense Civil-Military interface
 - Contribution of Civil Aviation in trade, tourism and economic growth
 - Unproportionally large UAS industry
- Relatively large number of
 Prohibited/Restricted/Danger Areas
- IAF (Military ATM) is the ANSP for the majority of domestic traffic
- Airspace Risk Assessment –
 assistance from EuroControl (STS)

Setbacks:

Weather minimum conditions – impact on safety

Data Driven Regulation – defining critical information and data collection processes

Integration with National Air Defense (procedural/integrative)

* ANSP (IAA) (AIXM?)

Hadera city U-Space – airspace classification & assessment

Za/Zu

CAAINJIT

Obstacle and Sensitive Land Uses Mapping

Existing Databases were identified and studied (format, quality, integrity, accuracy,

timeliness)

- Building Contours
- Cellular Towers
- Electricity Poles/Lines
- Trees
- ₩ Etc..

Obstacle and Sensitive Land Uses Mapping (1)

- Existing 3D highresolution mapping
 databases were used to
 identify potential
 obstacles
- Digital databases can be embedded simply in UTM

Source: Simplex 3D Model, Tel Aviv Yaffo

Tel Aviv city U-Space – Development of Shielding Model

רשות התעופה האזרחית Civil Aviation Authority

Obstacle and Sensitive Land Uses Mapping – Cell Towers

Constant / Temporary National Security Restrictions

GNSS – SiS Performance – data collection

CAAINJIT

For presentation

Purposes only

Data collection − 15,000 flights ⊗

- Mata Data data source (internal reports? external sensors?)
- UAV type, weight, GNSS reception, Battery status
- Breakdowns of:
 - Route length
 - Horizontal and vertical accuracy (planned v. actual)

Next Steps

long distance ops (eVTOL), UAM

Expanding to more U-Spaces – operating several USSPs simultaneously

Shielded & Monitored Operations (UTM) – Reduced coordination and transparency to manned traffic & ATM

Further develop the ecosystem – CIS, ANSP.

Manned Aviation integration, UAM

No soup for you! (mainly <u>government</u>)

Lessons Learned – Data Driven Regulation

Lessons Learned – Data Driven Regulation

NAAMA Pilot – Data Driven Regulation Approach

[© Airwayz Drones Ltd.]

Performance Table: Hadera-2 Weeks 1-2

[NAAMA Pilot = INDI]

DSOS	50 - 200M	200 - 500 M	>500M	Total Flights	Flight-Dist(km)	Service-Dist(km)	Service/Flight %
Airwayz	347	980	573	1902	1138.0	755.6	150.6
Hartech	21	232	90	343	158.7	76.4	207.5
HighLander	110	162	209	481	239.2	185.3	129.1
Simplex	121	88	381	590	429.0	389.6	110.1
Total	599	1462	1253	3316	1964.9	1407.0	139.6

DSOS	Avg - Deviation(m)	100m< deviation cases	Avg Horz. Deviation	100m <horz. deviations<="" th=""></horz.>
Airwayz	9.3	22.0	7.4	19.0
Hartech	11.8	7.0	6.0	5.0
HighLander	15.1	2.0	1.7	2.0
Simplex	12.6	2.0	8.8	2.0
Total	10.9	33.0	6.8	28.0

(X - Number of flights reported manually by DSOS, Compared to flights counted by the USSP Data systems)

Lessons Learned – Data Driven Regulation

[© Airwayz Drones Ltd.]

Horizontal deviations (X-Y) from Path, Frequencies and Averages

Deviation(m)	Count	%	Average(m)	Analysis
<5	2343	70.7%	0.9	Measurement Inaccuracies
5 - 20	443	13.4%	10.1	Few manual/post missions maneuvers
20 - 50	121	3.6%	29.6	p. mission maneuvers + temp deviation from path (e.g. changing path)
50 - 200	49	1.5%	92.6	deviation from path (e.g. changing path), or path errors
200 - 1000	13	0.4%	432.6	Mainly path errors (sending a wrong path)
>= 1000	347	10.5%	9977.6	No path
otal	3316	100.0%		

3D deviations (X-Y-Z) from Path, Frequencies and Averages

Deviation(m)	Count	%	Average(m)	Analysis
<5	1675	50.5%	1.39	Measurement Inaccuracies
5 - 20	969	29.2%	11.30	Few manual/post missions maneuvers
20 - 50	243	7.3%	29.43	p. mission maneuvers + temp deviation from path (e.g. changing path)
50 - 200	69	2.1%	92.59	deviation from path (e.g. changing path), or path errors
200 - 1000	13	0.4%	433.04	Mainly path errors (sending a wrong path)
>= 1000	347	10.5%	9977.60	No path
Total	3316			

Pre-VLD Data collection

- Standard: N. DOCLOO661 Obstacles + Terrain – Israel Mapping agency, ANSP, CAA (eTOD), municipalities
 - Before VLD flights visual scanning of every route and landing location.
- NFZ/sensitive locations Aviation stakeholders AIP, ANSP, air force.
 - Non aviation municipalities, government agencies.
- Weather local company (dust devils...) [+ comparison to tomorrow.io NowCast]
- Separation
 - Drones N-RID Standard: ASTM 3411-22a (NPA2021-14)
 - Manned trials with cellular applications (+human interface) [VLD movie:]

Manned and Unmanned Aircraft Separation via UTM

20

Conclusions/debate/issues

- Are the standards appropriate, too prescriptive or not, flexible or not, etc.?
 - Pro safety (?). simple oversight/certification.
 - Con scalability/business case/costs. Slow to advance with technology.
- Test case manned aviation data via cellular apps.:
 - General apps. widespread usage by LSA (light sport aviation) [easy implementation]
 - ** ALOS for LSA? Private Heli? HEMS? GA? Regional air carriers?
- Findings on the relationship between data requirements (accuracy, availability, refresh rates, etc.) and USS/UTM performance (500ft/500m)

